

http://www.apsnet.org/online/feature/rapid/

December 20, 2000 Tommy Witt and Randall Glover Poa trivialis overseeded bermuda Cassique Golf Course Kiawah Island, South Carolina

- First East Coast diagnosis
- Dr. Bruce Martin Contacted
- Dr. Mary Olsen and Dr. Frank Wong join the quest shortly thereafter
- The project gets "legs"
- The rest is history

Koch's Postulates

- Disease continues to spread from diseased to healthy plants within sample plugs in the laboratory – not good enough.
- Attempts to isolate the pathogen on water agar, PDA, media etc. failed
- Attempts to isolate the pathogen on standard chytrid media by Jim Adaskaveg, UC Riverside, failed

Koch's Postulates Continued

- Steve Alderman, USDA, has reproduced the disease by seeding poa trivialis into soil from samples that were previously killed by the pathogen – close but no cigar.
- In 2003 Mary Olsen, U of A, nails the ID as Labyrinthula and completes Koch's postulates wins steak dinner.

Temporal Variation

Managing Soil Sodium

- Rainfall patterns
- Irrigation volumes
- Water quality
- Soil texture and drainage
- Soil amendments

Martin, Olsen and Wong

- Sodium (Na) is a critical element for pathogenesis
- Estimated sodium threshold for rapid blight is 114 ppm or higher in sandy soil
- Soil salinity threshold is 2 dS/m or higher
- Potassium may reduce disease severity

Irrigation Water Quality Comparisons						
	No Restriction	Friendly Hills	Santa Ana	CAP	Silverleaf Recycled	
EC dS/m	<0.8	0.6	0.6	1.0	1.4	
TDS pppm	<525	378	380	640	867	
рН	6.5 – 7.8	8.1	8.4	8.0	7.0	
SAR	<3.0	0.9	9.1	2.4	3.8	
HCO3 ppm	<50	266	184		189	
Na ppm	<100	30	117	93	150	
RSC meq/I	<1.0	0.0	2.7		0.0	
B ppm	<0.5	0.1	0.2		0.3	
CI ppm	<90	45	71	86	187	
NO3 ppm	<8.0	3.6	0.5	0.2	18	

Irrigation Water Quality Comparisons							
	No Restriction	Friendly Hills	Santa Ana	CAP	Silverleaf Recycled		
EC dS/m	<0.8	0.6	0.6	1.0	1.4		
TDS pppm	<525	378	380	640	867		
рН	6.5 – 7.8	8.1	8.4	8.0	7.0		
SAR	<3.0	0.9	9.1	2.4	3.8		
HCO3 ppm	<50	266	184		189		
Na ppm	<100	30	117	93	150		
RSC meq/I	<1.0	0.0	2.7		0.0		
B ppm	<0.5	0.1	0.2		0.3		
CI ppm	<90	45	71	86	187		
NO3 ppm	<8.0	3.6	0.5	0.2	18		

Irrigation Water Quality Comparisons							
	No Restriction	Friendly Hills	Santa Ana	CAP	Silverleaf Recycled		
EC dS/m	<0.8	0.6	0.6	1.0	1.4		
TDS pppm	<525	378	380	640	867		
pН	6.5 – 7.8	8.1	8.4	8.0	7.0		
SAR	<3.0	0.9	9.1	2.4	3.8		
HCO3 ppm	<50	266	184		189		
Na ppm	<100	30	117	93	150		
RSC meq/I	<1.0	0.0	2.7		0.0		
В ррт	<0.5	0.1	0.2		0.3		
CI ppm	<90	45	71	86	187		
NO3 ppm	<8.0	3.6	0.5	0.2	18		

Calcium to Manage Sodium

- Gypsum: CaSO₄*2H₂O (23% Ca)
 - -10 lbs/1000 sq ft monthly and leach
- Calcium chloride: CaCl, (36% Ca)
 - -Fairways only so far
 - -100 200 lbs/acre, 5 6 applications
- Pounds on the ground!

Using Calcium to Displace Sodium

- Reported Na ppm 110 ppm = excess Na ppm
- Excess Na ppm * 0.04 = lbs Ca needed per 1000 sq ft
- Lbs Ca/ 0.23 = CaSO₄ requirement
- Lbs Ca/ 0.36 = CaCl₂ requirement

Using Calcium to Displace Sodium: Precautions

- Do not apply more than 10 lbs CaSO₄ per 1000 sq ft per application to greens.
- Allow minimum of 14 days between applications – 28 days if high rates used
- Do not apply more than 200 lbs CaCl₂ per acre to fairways per application per month

EC meters measure SO4-S and Cl

- Electrical conductivity is related to soil salinity
- The main anions that are measured are sulfate and chloride
- Calcium amendments add to the soil pool of sulfate and chloride – select wisely.

Sodium Applied in Irrigation Water

(100 ppm Na in water) * 2.72 = 272 Na/A ft

272 lb Na/A ft * 5 acre ft/A = 1360 lbs Na/acre

Estimated Accumulation of Sodium in Soil

0.5 * 1360 lbs/A = 680 ppm Na increase/year

680 ppm Na – 110 = 570 ppm excess Na

570 ppm Na excess * 0.04 = 23 lb Ca/M required

(22 lb Ca/M)/0.23 = 100 lbs gypsum/M (~2 tons/acre)

Arizona Rapid Blight Management

- Preliminary data suggests that salts have been managed effectively
- · Sodium may be the weak link
- Summer calcium applications and leaching will be needed to move sodium out of the soil
- Increased leaching is needed to move sulfur and chloride out of the root zone

